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CONVERGENCE RATE OF A GRAM-SCHMIDT CANCELLER

I. INTRODUCTION

The open-loop Gram-Schmidt (GS) technique for adaptive cancellation [1-6] has been shown to
yield superior performance simultaneously in arithmetic efficiency, stability, and convergence times
over other adaptive algorithms. Arithmetic efficiency results from using systolic processing architec-
tures that take advantage of the GS structure. In addition, the stability of the GS algorithm is
enhanced because it does not require the direct calculation of an inverse covariance matrix as does the
Sampled Matrix Inversion (SMI) algorithm [7]. Also, the GS canceller algorithm is very suitable for
a nonstationary noise environment because the adaptive weights can be updated in a numerically effi-
cient manner, by using "sliding window" techniques on the input data instead of "batch" or
"block" processing. Two types of batch processing techniques are concurrent processing and non-
concurrent processing. For concurrent processing, the adaptive weights are calculated from an input
data set and reapplied to the same input data set. For nonconcurrent processing, the weights are
applied to a different data set.

The optimal weights associated with an adaptive canceller are generally not known a priori and
thus must be estimated by using finite averaging. Because of the use of estimated weights, subop-
timal canceller performance results. Reed, Mallet, and Brennan [7,8] quantified this performance for
the SMI algorithm in the transient state under certain input conditions, one of these being that the
input noise must be Gaussian. They mathematically demonstrated that the SMI canceller has rela-
tively fast convergence characteristics and also that the convergence is independent of the input
covariance matrix.

In this report, we show that the GS canceller algorithm is numerically identical with the SMI
algorithm in the transient state if infinite numerical accuracy is assumed (Section IV). By transient
state, we mean that a finite number of time-coincident samples per channel are used to obtain an esti-
mate of the optimal weights. Thus the convergence rate or any other measures of effectiveness of the
two algorithms in the transient state are identical. In addition, we reproduce many of the results of
Refs. 7 and 8 by using the GS canceller structures as an analysis tool (Sections V to VIII). Also,
new results are generated for the case when the input noises are not necessarily Gaussian (Sections IX
and X). Furthermore, various results are presented for the three forms of the GS canceller (con-
current processor, nonconcurrent processor, and sliding window processor). In particular, it is shown
that the sliding window GS canceller is convergent, equivalent in the transient state with the con-
current GS canceller (Section XI). Section XII discusses the deleterious effect of "overmatching the
degrees of freedom."

Note that the analysis presented in this report pertains to the adaptive processor in the "sidelobe
canceller" (SLC) configuration, where the desired signal is assumed to be present only in the main
channel and auxiliary channels are used to cancel correlated noises in the main channel. However, as
is shown in Ref. 7, any nonconstrained, linear adaptive array processor can be transformed into an
SLC configuration without changing the convergence properties. Hence, the results of this report
apply to any nonconstrained linear adaptive array processor.

Manuscript approved March 9, 1989.
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II. THE GS CANCELLER

Consider the general N-input GS canceller structure as seen in Fig. 1(a). Let XM (t),

xl(t) ,... , xN-l(t) represent the complex data in the 0th, 1st, . . , N - Ith channels, respectively.

We call the leftmost input xM(t) the main channel, and we call the remaining N - 1 inputs the auxili-

ary channels. The main channel's signal consists of a desired signal plus additive noise. The noise

consists of internal noise plus external noise. Cancellation of the signals from external interfering
sources relies on the correlation of simultaneously received signals in the main and auxiliary channels.
The internal noises on each channel are assumed uncorrelated between channels. The canceller
operates so as to decorrelate the auxiliary inputs one at a time from the other inputs by use of the
basic two-input GS processor as is shown in Fig. 1(b). For example, Fig. 1(a) shows that xN - 1(t) is

decorrelated with xM(t), xl(t), . .. , xN-2(t) in the first level of decomposition. Next, the output
channel that results from decorrelating xN -(t) with XN- 2 (t) is decorrelated with the other outputs of

the first-level GSs. The decomposition proceeds until a final output channel is generated. If the
decorrelation weights in each of the two-input GSs are computed from an infinite number of input

samples, this output channel is totally decorrelated with the input: x 1l), x2 (t), . X. ,xN1(t).

MAIN

CHANNEL AUXILIARY CHANNELS
XM X1 xN _ 4 XN_ 3 XN - 2 XN-11

0 0 0

LEVEL 1 G GS

x (2) xl(2) X2 2) (2
0 N-4 X ~~-3 xN- 2

LEVEL 2 GS GGS G

LEVEL 3

LEVEL N - 2

(N-
xO

LEVEL N - 1

Fig. I(a) - GS structure
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x X2

I ~~~GS

I + x 1X2*/I x212IL____I _ __ __ _ __ I

Fig. I(b) - Basic two-input
GS canceller

If there is not an infinite number of input samples, the decorrelation weights associated with
each two-input GS canceller are estimated by using finite averaging. In this section we discuss two
methods of processing data through the GS canceller. The first is called concurrent processing
whereby the weights are estimated from a block of input data and applied back onto the same input
data set. The second method is called nonconcurrent processing whereby the weights are estimated
from a block of input data and applied to subsequent or previous input data. Inherent in both tech-
niques is the "block processing" of data. (In Section XI we consider another form of the GS can-
celler; it uses sliding window or systolic techniques.) Reference 8 shows that the average output
noise power residue can vary quite differently, depending on whether concurrent or nonconcurrent
processing is used.

We now briefly describe the concurrent and nonconcurrent GS canceller. For the concurrent
canceller, let x(m) represent the time-coincident outputs of the two-input GSs on the (m -I)th level.
Then outputs of the two-input GSs at the mth level are given by

xgm+l) = 0,(m) _ m)xm) m = 1,... .,N -m 1 (2.1)
Xn -Xn Wn X -mS m =1, 2,.. .,N -1.

Note that x41) = XM and x - x,, n = 1, 2, ... N -1. The weight w (m), seen in Eq. (2.1), is
computed so as to decorrelate x,,m) with xj)m. For K input samples per channel, this weight is
estimated as

K

E xrjm* (k)xnfm)(k)
w,(m) = k = , (2.2)

K

W IXpm) (k)1 2

k=1

where * denotes the complex conjugate and is the magnitude. Here k indexes the time-
coincident sampled data.

For the nonconcurrent canceller, let X,(m) represent the outputs of the two-input GSs on the
(m - l)th level. Then the outputs of the two-input GSs at the mth level are given by

3
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X~m+1) - X~m -w~mn =0, 1,..., N - m - 1
Xnml - ) ' X4-m , m= 1, 2,.. ,N - 1, (2.3)

where X6') = XM, Xn1") = Xn, n = 1, 2, .. N - 1, and w%(m) is calculated by the use of Eq. (2.2);
i.e., these weights are computed from a block of data that does not include X,.

Let x0 and X0 represent the additive noises in the main channel for concurrent and noncon-

current processing, respectively. For this development, unless otherwise noted, we make the follow-
ing assumptions:

1. The x0, xl, .. , XNI and X0, XI, ... , XNI are identically distributed Gaussian com-
plex random variables (r.v.).

2. These same r.v.'s are samples from stationary processes with zero mean and equal vari-
ance.

3. For k1 * k2, x0 (k 1) is independent of x, (k2) and X0 (k 1) is independent of X0 (k2 ).

4. xn(k 1) is independent of X2 (k2 ) for all k 1, k2 , n 1, n 2

5. The desired signals are not present during weight computation for nonconcurrent process-
ing.

6. The desired signals are not present in the auxiliary channels.

Note that in Sections IX and X, we remove the assumption that the r.v.'s are Gaussian.

The following definition is used often in the upcoming development. A normalized L-length
multivariate complex circular Gaussian vector has L elements, each of which has real and imaginary
parts that are independent Gaussian r.v.'s with 0 mean and variance equal to 1/2 (note the magnitude
variance is one). In addition, the L elements are independent of one another.

III. OUTPUT MEASURES

The N-input GS canceller structures for concurrent and nonconcurrent processing are simplified
by the representations as seen in Fig. 2(a). There are .5N (N - 1) weights computed in the GS
structure. We call these weights the GS interior weights. The notation GSKN indicates that an N-

input GS structure uses K samples from each channel to compute the GS interior weights in the GS
structure. Note that for the nonconcurrent structure the weights are computed from the x0 , x1, . . ..
XN I data block and applied to X0, X 1, ... , XN -I. The 0th channel (or the far left channel in Fig.
2(a)) is always designated as the main channel, and the others are called auxiliary channels (or
AUXs). The output of the concurrent (weighting) processor is denoted by z, and the output of the
nonconcurrent processor is denoted by Zn,. We also represent the GS structure as shown in Fig.
2(b), where the N orthogonal outputs are displayed.

As previously mentioned, input signals in the main channel consist of a desired signal s plus
noise x0. For nonconcurrent processing, it is assumed that the desired signal passes from input to
output unperturbed. However, for concurrent processing the presence of the signal in the main chan-
nel causes signal cancellation through the GS canceller as reported in Ref. 8. Because of linearity,
the GSK,N canceller can be decomposed as shown in Fig. 3 (see Theorem 2, Section IV). The left-
hand GSK ,N canceller seen in this figure has only the desired signal in the main channel, and the

4
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XM

CONCURRENT

WEIGHTING

Zcw

NONCONCURRENT

WEIGHTING

znw

Fig. 2(a) - Representations of concurrent and nonconcurrent
weighting of GS cancellers

MAIN

CHANNEL

AUX CHANNELS

m
xi X2 XN-1

Z0 Z1 Z2 ZN-1

Fig. 2(b) - GS representation with N
output channels
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S' + zCW

Fig. 3 - Decomposition of signal and noise for
concurrent processing

right-hand GSKN has only noise x0 in the main channel. Note that the interior weights of each
GSKN are not identical because of the different main channel input in each (actually only the weights
along the main channel path of each differ). As will be seen, we use this decomposition when defin-
ing the output noise-to-signal power ratio (NSR).

It can be shown that for any set of GS interior weights that are estimated and applied to the aux-
iliary input channels there is an equivalent linear weighting of the input auxiliary channels. We
denote this equivalent linear weighting by the (N -1)-length vector wa' where

Wa = (W1, . .. , Wl)T. (3.1)

Thus, the outputs of the GS processed main channel are identical to the outputs of a main channel
derived by subtracting the linear weighted auxiliary channels from the main channel input. With
respect to the decomposition configuration seen in Fig. 3, we see that wa is actually the sum of two
(N-1)-length weighting vectors *w4a and 'a n' where *'as is the auxiliary linear weighting vector
associated with only the desired signal in the main channel and Va ,n is the auxiliary linear weighting
vector associated with only noise x0 in the main channel. Note that as K- A, w' - 0; also for
nonconcurrent processing, Wa = W . For the GS canceller the weighting on the main channel is
constrained to be one.

Let a in be the steady state (K - oo) output noise power residue and let SNROPt be the steady
state output signal-to-noise ratio. Note that the aunin is identical for both concurrent and noncon-
current processing as is SNROpt. Here

Ra is the steady state (N - 1) x (N - 1) input noise convariance matrix of the
auxiliary channels,

Ra is the estimated auxiliary input covariance matrix using x1, X 2 , ... , XN -I data
(K samples per input channel),

6
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Rx is the estimated auxiliary input noise covariance matrix using X1, X2, ... , XN -1I
(note, no desired signal assumed in this calculation),

~n~w is the transient output noise power associated with nonconcurrent weighting
normalized by dividing by oain,

an~w is the transient output noise power associated with nonconcurrent weighting
normalized to 9min and averaged over X0, X 1, . XN-. I

SNRfW is the transient output ratio SNR associated with nonconcurrent weighting
normalized by dividing by SNROpt and averaged over

XO, X 1 , ... , XN-li

S' 12 is the transient output signal power associated with concurrent weighting
normalized by dividing by the input desired signal power Is 12,

acw is the transient output noise power associated with concurrent weighting
normalized by dividing by amen, and

NSRCW is the transient output noise-to-signal power ratio associated with concurrent
weighting normalized by dividing by SNROpt.

Note that the last eight quantities defined are r.v.'s. NSRCW is defined as a noise-to-signal ratio
because it is easier to obtain an analytical result pertaining to this quantity as opposed to the SNR.

By using the above definitions, it can be shown that

2 1Zw 2 I02 '*
= = xo _2 _ WaRXWa (3.2a)

and

an. = EX,2w = o aRaWa (3.2b)
0 min

where Et I denotes the expected value and Ex- denotes that the expectation is taken over the r.v.'s
X0, XI, ... XN_. Furthermore,

SNR, ,J, (3.3)

and

I Zc 12 _IX0I*zn11'~

o 1212 -92 (3.4)
OnMn amin

NSR2 -= | s (3.5)

7
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We define

,n2w (K,N) = E [an2, = E( &a2W } (3.6)

SNRnw(KN) = E[SNRnwl, (3.7)

oa2w (K,N) = E fC2 }, (3.8)

SC (KN) = El Is'1 21, (3.9)

and

NSRCW (K,N) = E[NSRcW. (3.10)

Equations (3.6) to (3.10) are the first moments or average transient values of the previously defined
output measures of the GS cancellers. These output measures are commonly used to grade the con-
vergence performance of the SMI canceller.

In addition, the ith moment of SNRW is defined as

SNR(2 (KN) = E[(SNR WYI, (3.11)

and the ith moment of Is ' 2 is defined as

SC() (K,N) = Et(Is I2)i I (3.12)

where sCw(K, N) = s(')(K, N).

In the succeeding sections, expressions for n2u,(KN), SNRnW(K,N), Oa2 (KN), scw(K,N),
NSRCW (K, N), SNR2) (K, N), and s () (K, N) are derived by using the GS canceller as an analysis
tool.

IV. SMI AND GS CANCELLER EQUIVALENCE

In this section the SMI canceller and the GS canceller are shown to be equivalent in the sense
that the SMI's estimated linear weighting vector is identical to the GS's equivalent estimated vector.
Hence, if either concurrent or nonconcurrent processing is used, the output of the SMI and GS can-
celler is identical in the transient state (finite averaging). For this equivalence to be true, infinite
computational accuracy and the nonsingularity of the estimated input covariance is assumed.

We briefly describe the SMI algorithm for the SLC configuration. If Ra is the
(N - 1) x (N - 1) auxiliary input covariance matrix and ram is the N - 1 length cross-correlation
vector of auxiliary channel against the main channel, the optimal (minimum output variance) N - 1
length weighting vector wa is given by

Wa = Ra-1 ram. (4.1)

8
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For the SMI algorithm, Ra and ram are estimated, the auxiliary weighting vector is calculated by
using Eq. (4.1), this vector is applied to the auxiliary channels, and the resultant is subtracted from
the main channel.

Define the input data vector

Xa(k) = [xl(k), X2 (k), ... , xNl(k)]T, k = 1, 2, ... , K (4.2)

where a refers to the auxiliary channels and T denotes the vector (or matrix) transpose operation.
The estimates of Ra and ram, denoted by Ra and iam, are given by the expressions

and

(4.3)

(4.4)

Ra=- , x * (k) xaT(k)
K k=1a

l K
Pam = - E Xk*(k) xo(k) kK a~

where the estimated linear weighting vector can be found by using the equation

RaW = am. (4.5)

We define the following K-length input data vectors

x. = [x (l), x (2), . . ., xn(K)]T, n = 0, 1, ... , N - 1 (4.6)

and a K x (N - 1) auxiliary input data matrix A, where

A = (xl, x2, ... , xNI) (4.7)

It is straightforward to show that

Ra = AtA

and

ram = AtX0 I

where t denotes the conjugate transpose. Thus, by using Eq. (4.5),

W = Ra .ram = (A'A)lAtXo.

(4.8)

(4.9)

(4.10)

Note that a necessary condition that Ra be nonsingular (and hence a unique solution for * exists) is
that K 2 N - 1. To show this, assume that K < N - 1 and define an (N - 1) x (N - 1) aug-
mented matrix Aaug as

9



Aaug =

where the last N - K - 1 rows are zero filled. Now

Ra = Aug Aaug.

However the determinant of Ra , denoted by det(Ra), equals det(Aaug) . det(A'ug).
det(Aaug) = 0, it follows that det(Ra) = 0 so that Ra is singular if K < N - 1.

(4.12)

Since

We now show that if K = N - 1, that output noise residue is zero for the concurrent processor
implementation. Set * = (wV, 1'2, -. . WN-) and let z be the K length output residue vector of the
concurrent canceller. As a result

N-1
Z = X - E Wn Xn 

N=1
(4.13)

By using Eq. (4.10), it can be shown that

z = xO- A(A'A)-lA'xo

= (IK - A(At A) -A')x 0 , (4.14)

where IK denotes the K x K identity matrix. For K = N -1, A(A'A)-'A' = /K' so that z = 0.

As a result of the preceding discussion, in the following development for nonconcurrent process-
ing we restrict K 2 N - 1, and for concurrent processing we restrict K 2 N.

If we set * = ( , It2 , . . ., VN_ 1 )T, then it can be shown that Eq. (4.5) reduces to solving the
following system of linear equations:

N-I
X -XE I n 1 n

n =1

- XIXOI (4.15)

N-1
E X2 Xn Wn

n =1

N-I
E XN-I Xn Wn

n =1

= - xN1 O

10
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We show that the solution for the SMI weights, wl, w2 , .. ., WN 1 , which orthogonalizes the auxili-
ary input data vectors x,, n = 1, 2, . .. , N - 1 to the output residue vector z, is obtained by solv-
ing the system of equations given by Eq. (4.15); i.e., the condition

X Z = 0, n = 1, 2, ... , N-1 (4.16)

results in a system of equations identical to Eq. (4.15). Note that Eqs. (4.13) and (4.16) imply con-
current processing. However the weight calculation is valid for either concurrent or nonconcurrent
processing.

If the concurrent GS canceller orthogonalizes the output data vector with respect to the auxiliary
input data vectors xn, n = 1, 2, ... , N - 1, it follows that the equivalent linear weighting vector
associated with the GS structure is identical to that computed for the SMI algorithm. We show that a
concurrent GS canceller orthogonalizes the output data vector z with respect to the auxiliary input
data vector by using mathematical induction. This is obviously true for N = 2; we assume that it is
true for all integers less than N - 1 and demonstrate that it is true for when the number of channels
equals N.

From Fig. 2 and our assumptions:

X(2)'z= 0, n = 1, 2, . N ., N 2 (4.17)

and

t Xn2 = 0, n = 0, 1, 2, .. .,N-2, (4.18)

where xM) x(2) are the K-length data vectors associated with x(l), X"(2) respectively. Furthermore,
the output vector can be written as

N-2
z = Y2) - E W' x (4.19)

n=1

where WI, W2, ... , W-2 is representative of the equivalent linear weighting of the input vectors
from level 2 through N -1 of the GS structure (see Fig. 1(a)). Using Eq. (2.1) in Eq. (4.17) results
in

(x - X z = X ) -W ( )*xN)I z = 0, n = 1, 2, ... , N -2. (4.20)

From Eqs. (4.18) and (4.19) it can be shown that

N-2
XN)1Z = XN) IX 2) - E Wnxn 2 )txjh 1 = 0. (4.21)

n =1

Thus, from Eqs. (4.20) and (4.21), it follows that

xnl)tz =0, n = 1, 2, ... , N - 1. (4.22)

Since xn = xnl) n = 1, 2,..., N-1, we have shown that the auxiliary input data vectors are
orthogonal to the output vector.

11
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V. INVARIANT TRANSFORMS AND GS THEOREMS

In this section, we discuss two types of matrix transforms on the input data that significantly

simplify the forthcoming analysis. In addition, two theorems related to concurrent GS processing are

presented. Let C be any N x N nonsingular matrix. It is well known [7] that transforming the

input channels XM, x1, . .. , XN -I by this transform does not change the transient or steady state per-

formance of the SMI (or GS) canceller. GS cancellation is equivalent to a specific matrix transforma-

tion of the input channels. For the GS canceller, the transform matrix C has the upper triangular

matrix form. Figure 4 shows an equivalent configuration of a GS canceller in the transient state.

Here C is implemented by passing the input channels through a GS. ,N structure followed by a power

equalizer on the output auxiliary channels. The output powers of the AUX channels after power

equalization are equal to u1.in- Note that each input channel into the GSK,N structure is orthogonal in

the steady state to the other channels and that all input channels have the same power level, amin.

Also, without loss of generality we can define cin = 1.

XM X1 XN -1

dnn= eM.~
n 

Fig. 4 - Residue equivalent GSK,N canceller
using the power equalizer matrix

12
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The structure shown in Fig. 4 illustrates that any GS canceller-structure can be divided into two
parts-a deterministic steady-state, front-end processor whereby the main channel is decorrelated from
the auxiliary channels and a stochastic back-end processor that is driven by uncorrelated equal-
powered noise in each channel. The back-end processor is independent of the input covariance
matrix, and the auxiliary weights associated with the back-end processor go to zero as K - xo.
Hence the convergence properties of the GS canceller can be studied by analyzing the convergence
properties of the back-end processor. Thus from this point on, the input channels are assumed to be
orthogonal and of equal power.

A second matrix transform that significantly simplifies the forthcoming analysis is now dis-
cussed. Let 4' be any K x K unitary matrix, i.e., 4' t< ' = IK. Let us transform each input channel
noise vector xn, n = 0, 1, 2, . . ., N - I by 4 such that

X'n =4 Xn , n = O, 1, ... , N - 1, (5.1)

where x 'n, n = 0, 1, ... , N- 1 is the resultant output noise vector. If we input this noise vector
into a GSKN canceller, we can show that the estimated weights using the xn inputs are identical to
those using the x', inputs. This is easily proved by substituting x', as given by Eq. (5.1) into Eq.
(4.7), which is the system of equations that solves for the auxiliary weights. Because

X n X'm = (4'Xn) ( 4' X) = Xn Xm, for any n, m, (5.2)

an identical system of linear equations results. Thus, the estimated weights are identical.

One simplification that readily presents itself because of the above invariant transform pertains
to the signal representation for concurrent processing. Let the input signal be represented by the K-
length vector s, where

S = (S19 S2 X SK )T. (5.3)

It is known that a unitary matrix transform bI, exists that transforms s into a K-length vector with a
nonzero first element and all other elements equal to zero. In fact

s = sS = (.S, 0, 0, . . ., °)T. (5.4)

Thus we need only consider an input signal vector that is proportional to the form (1, 0, ... , O)T and
StS.

The following two theorems illustrate the proficiency of the concurrent GS canceller in perform-
ing the "cancellation operation."

Theorem 1: If

N-1
XM = E Cnxn (5.5)

n =1

then the GSK ,N structure using concurrent processing cancels XM exactly regardless of the number of
input samples K per channel.

13
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Proof: We use proof by induction. First we prove the theorem is true for N = 2; then we
show that if it is true for N - 1, it is also true for N.

For N = 2, XM = c 1x 1, let w be the decorrelation weight derived from K input samples in
each channel, i.e.,

K

E xt(k)xo(k)
W = I= (5 .6)

, I x (k)l
k=I

Substituting XM = cIxI into Eq. (5.6) gives w = c 1, and therefore XM - wx = 0. Thus, Theorem
1 is true for N = 2.

Assume that the theorem is true for all integers less than N. Now x (2) n = 0, 1, ... , N - 2
are the outputs from the first level of GSKN as illustrated in Fig. l(a). That is

X -(2) = (I) - w,(' 1)x , I n = 0, 1, ... , N - 2 (5.7)
where

-nl =1K (5.8)
K

F, xk *~) (k)x (' 2
k =1

For wUl), substituting Eq. (5.5) into Eq. (5.8) gives

N-2
w61) = E c W(I) + CN - 1. (5.9)

n =1

Hence,

x = -wgl)xNk) I = +CN _ - Cn Wn + CN-1 Xp I,
n=1 n=1

= E 2 Cn [X41) - WnXk) I
n =1

N-2
= E CX"2) . (5.10)

n =1

Figure 5 illustrates the form of the output after first-level processing. Note that x x I2).
2 are the inputs to a GSK,N - Istructure. Because x62) is a linear sum of x (2), X2), . .. , X$ 2 as

shown by Eq. (5.10), and the theorem holds for N - 1, then x42) is exactly cancelled independent of
K. Hence the theorem holds for N and the theorem is proved by induction.

14
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xX() = v Nx-X1 ^

I ~~FIRST LEVEL OF GS, ,

x8)=vC'X (2 xl2) X22) xN )a

GSK N- 1

zCZcw

Fig. 5 - Concurrent GS canceller after
first-level processing

A theorem that follows as a result of Theorem 1 is

Theorem 2: If

N-I
XM = c Cnxn + e

n =1

then the output noise zcw
N-1

independent of E CnXn '

n=1

GSKN structure using concurrent processing depends only on e, i.e., zc,, is

Proof: Let us write

XM = X 0 1 + X 0 2 ,

where

N-I
xol = E cnxn; x02 = e .

n=1

From Fig. l(a), all the w,(m), n > 1 are independent of XM, x0i, or x02, i.e., all computed weights to
the right of the main channel do not depend on the main channel inputs.

15
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For wgl) (the first level, main channel weight),

K

4 XpI) 1 *(k) [x6")(k) + xo()(k)]
W(1) = k= K

E x2 1(k) 2
, I xk'! I (k)| 

k=1

= Wgl) + W , (5.14)

where

K

xk'-) I * (k) x 6) (k)

61o) K ; (5.15a)

E I xk'! I (k) 1 2

k =1

K

xk'-)' 1(k) x ') (k)
W(2)= k=. (5.15b)

'L I xk$) I (k) | 2
k =

Thus

X62) = X6j) + x g9) - (W6') + W') ) Xk')Ii

= IX 6P - Wg) XP ) I I + IXO21 W21 XkI I],

= ±g21) + , 2) (5.16)

where

X(2) = XO() - W(1) Xkl) ; X02) = X61 W) 9X-I (5.17)
I0 W 1 2-1'- 5.7

Note that the outputs xo2M) and 2 could have been computed independently of each other. Each
output depends only on its respective input, x01 or x02. We can continue down the main channel,
computing the outputs of each successive two-input GS as the sum of the residues that result from
components of the input sum.

As a result, an equivalent GS canceller for a main channel that is the sum of two components is
shown in Fig. 6. Here each individual GSKN structure is computed with respect to its main channel
input with the outputs at each GSKN summed to form the resultant. Hence, because of Theorem 1,
x01 is nulled completely so that the resultant depends only on x02 or e. Thus, we need consider only
the independent noise term of XM when computing the output noise power.

16
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xO = x01 + X02

R, R1Ep2

lcw

Fig. 6 - Equivalent concurrent GS canceller for main channel that
is the sum of two components

VI. THE TWO-INPUT GS CANCELLER

The basis for understanding the convergence properties of a GS canceller begins with studying
the two-input GS canceller illustrated in Fig. 7 where from the discussion in the previous section, x0

and x1 are r.v.'s that are assumed to be equal powered and uncorrelated. Let

Z,,w = (z,_ (l), zcw (2),.. , ZCW (K))T

be the concurrent output noise residue vector and Znw be the nonconcurrent output noise residue. For

a two-input GS canceller

zcw = XO - W Xi, (6.1)

(6.2)znw = X0 - W XI,

where

xix
W = -i

x'x1lI

Furthermore, the transient output noise powers are given by

(6.3)

~ 2 1 zctwzcw I L X- Ix xoI2

cw K orm.n Kormin XltXI 

I xxo 1 2
±(x fx )2

17
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X1 xo x1

X1

(a) (b)

Fig. 7 - Two-input GS cancellers

_ In Appendix A (and Ref. 8), it is shown under Assumptions
Onw = iq has the following probability density function.

1 to 6 given in Section II that

K
p (i) = ' + (6.6)

Now the transient SNR is equal to the reciprocal of OtnZw Thus if SNR = 1/&nw = p, then by the use
of elementary probability theory,

p(p) = KpK-I O < p c 1.

By using Eqs. (6.6) and (6.7), it can be shown that

an2w (K,2) = 1 + K I 1

SNRnW (K, 2) = K

and

SNRn2(K, 2) = KW ~ K + i'

From Eq. (6.4), the expected value of &2 conditioned on xi is given by

ECIV Komwi xl- tx°lXI
= KcQami [En X~X~1 - xfx1 ]

18
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By assumption E{X}j = ar2nIK, where IK is the K x K identity matrix and E XJXJ} = Ka2jn.
Thus Eq. (6.11) reduces to

EJ&,2 Ixxj = 1 - 1 (6.12)

Note that this expression is independent of xl so that

E [_2 ] = 1 _ K (6.13)E{&CWI K -

or

a~w (K,2) = 1 - 1 (6.14)

Also note the assumption that the inputs are Gaussian r.v.'s was not used in this derivation. In fact
each data point in either channel can have any p.d.f. so long as it has a zero mean and identical vari-
ances.

The unnormalized output signal vector through the two-input GS canceller is given by the
expression

XlXiIt 

_ - I
XIiJ

(6.15)

Hence the sample average output signal power is given by

(6.16)I s' 1 2 = 1 S,,,, = 1
K K

We show in Section V that s and Xi can be transformed by a unitary matrix without affecting the
resultant output measures. If we transform the s and xl by the unitary b5 matrix defined in Section
V, then Eq. (6.16) reduces to

I s"t 12 = I StS I

Now the normalized signal power is given by

Is i 12 =

I XI 1~) 2

KI
E IxI(k)1 22
k=I

K

19
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so that

ISti2 = 1 - I Ix(1)I

k lXI(k)1 2

k=I

It is straightforward to show that if xI is a normalized K-length, multivariate, complex circular Gaus-
sian vector, then t = I s, 1 2 has the following p.d.f.

p( ) = (K - l)iK 2 , t 2 0. (6.20)

Furthermore, the moments of I s' 12 can be found by using the above p.d.f. and are given by

S I') (K, 2) = K - 1 (6.21)

From Eq. (6.21) it follows that

scw (K,2) = 1 - K

Finally, we can show that

NSRCW = I -

I ("t - IXXO I2/xIXi)
K I I

1 - IXi(I)12

, Ixj(k)12

k=I

If NSRCW is averaged over x0 , then

E IN§Rcw I xj =K- K 

K-1
K K

I xI(l) 12 
1-K

E IxI(k)12

k=l

I xI(l) 12 

1 + K
E IxI(k)12

k =2

Now since x, is a normalized K-length, multivariate, complex circular Gaussian vector,

E {IxI(1)121 = 1 and E S K I

1 S IXI(k)12
I K=2 I
20
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Thus

NSR, (K, 2) = EtN§RLWI = K [1 +±K 2i

- (K-1) 2

K(K -2) (6.25)

VII. GENERAL MOMENT THEOREM FOR GS CANCELLERS

Let AK ,N denote a transient unnormalized moment of an output measure (output noise power
residue or SNR) associated with a concurrent or nonconcurrent GS canceller with N input channels
and K independent samples per channel. Define the normalized average transient moment as

(7.1)A(K,N) =- EAK,NI
lim E [AKN I

K-oo

where A (K, 1. In this section we prove the following theorem:

General Moment Theorem for GS Cancellers: If assumptions I to 6 hold, then

A(K,N) = A(K,2)A(K - 1,N - 1)

A(K,N) =
K
fI A(k,2).

k =K-N+2

(7.2)

(7.3)

Proof. We prove this by mathematical induction. First, the theorem is obviously true for N = 2.
Thus, we can assume that the theorem is true for all integers less than or equal to some upper bound:
N - 1. We can then show that it is true for N, which implies that it is true for any N 2 2.

Again assume that all input channels are of equal power and uncorrelated. It is shown in Ref. 7
and discussed in Section V that this assumption does not change the output measures. A GSKN struc-
ture can be decomposed as shown in Fig. 8 into a first-level processor followed by a GSK ,N- struc-
ture. The output data K-length vectors of the first-level processor can be written as

Yn = Xn Wn XN1_I ,

or

tXk-lXn

XN1 XN -1
n = O, N - 2 (7.4)

Yn = Xn -

xk -x
t X-XN1IXN-1XN-I

r__Ix_I XN-]XNt-1
Yn = - Xn J

XN -IXN- I
n = 0, 1, 2,..., N - 1.

21
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[XN-1

nw

Fig. 8 - Decomposition of GSK,N

It can be shown that

XN-l Xk-I 
IK - X ~ = 4tA4

XNt1XN-1

where 4 is a K x K unitary matrix and A is a diagonal matrix
other diagonal elements are equal to 1. Thus

where the first element is 0 and all

(7.7)

As shown in Section V, the output data set y,, n = 0, 1, ... , N - 2 can be transformed by a uni-
tary matrix 4 and not change the equivalent transient weighting vector of the GSK,N -I structure.
Thus

Un = 4)yn = A y 4Xn , n = nO 1, ... , N -2. (7.8)

Now set vn = 4'xn. Because xn is a normalized K-length multivariate complex circular Gaussian
vector, then v is the same. As a result, using the form of A and setting u,, = (Un1, un2 , ... , unk)TX

Vn = (Vn1, Vn 2, . . ., Vnk)T, it follows from Eq. (7.8) that

(7.9)UnI = 0

and

Unk = Vnk , k = 2, 3, ... ,K.

Hence, the input r.v.'s to the GSK,N-1 structure are identically distributed to the input r.v.'s to the
GSK ,N structure except that their number has been reduced by one as illustrated in Fig. 9.

22
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X0 XNl- X1 XN-1 XN-2 XN-1

X 1XN _1 X N -1 XN_ 2 XN-1

YOIYo Y1 Yi Y N-2|YN-2

Y0|U0 Y1 U1 YN-2IUN-2
GS ~GSK-1NS

Znw ZCW

Fig. 9 - Further decomposition of GSK,N

Consider the implications of this new structure by using concurrent processing. Let BKl ,N -1

denote a transient unnormalized moment of any output measure (output noise residue or SNR) associ-
ated with the GSK - 1,N -1 structure. Note that AKN = BK - 1,N -1. Then according to the General
Moment Theorem,

E[BK-1,N-1 I XN-11
im E[BK_,N- I XN-} = A(K - 1, N - 1). (7.10)

Klim. E IBK-1 ,N -I I XN -1I 
K- co

Note in the limit taken above that K goes to infinity only in the GSK - 1,N -1 structure and not in the
first-level processor that precedes the GSK- 1,N -1 structure. Thus

E[AK,N XN I I}I = A(K - 1, N - 1) lim EfBK-1,N- 1 XN 1- (7.11)
K-Co

or

EfAkNI = A(K - 1, N- 1) lim E[BK-1,N -1 (7.12)
K- oo

The limit in Eq. (7.12) can be evaluated simply. It is equal to the associated moment of the
output measure coming out of the first-level processor in the main channel or

lim [BK1-,N1- = A(K,2) lim E[AK,N . (7.13)
K-oo K-co
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Now, the limit on the right-hand side of Eq. (7.13) is equal to an = 1. Hence the theorem is
proved for concurrent processing.

We now prove the theorem for nonconcurrent processing. The nonconcurrent data sample after
first-level processing can be written as

Yn = Xn - inXN-I, n = 0, 1, ... ,N - 1, (7.14)

where vn is given in Eq. (7.4). Given XN _ 1 and XN._1, it can be shown that the Yn,
n = 0, 1, .. , N - 2 are uncorrelated complex Gaussian random variables, i.e., E[I YnY j 0 and

El I n l 21 equals a constant. Thus the YE, n = 0, 1, . .. , N - 2 conditioned on XN - I and XN - I are
identically distributed as the Xn, n = 0, 1, . .. , N - 1. Also note that the 4 transformation does
not change the equivalent linear weighting of the GSKN-1 processor or its equivalent GSK-1 ,N -1 pro-
cessor. Hence, the inputs (concurrent and nonconcurrent) into the GSK-lN-1 processor are identi-
cally distributed as those into the GSKN processor.

Defining BK-1 ,N-1 as before, it follows from the General Moment Theorem that

EtBK-IN.1I IXN-, XN..1 = A(K - 1, N - 1). (7.15)

lim EBK-1,N-1 I XN-1, XN-1
K-oo

By using Eq. (7.15) and reasoning similar to that used for proving the theorem for concurrent pro-
cessing, the theorem follows for nonconcurrent processing.

VIII. CONVERGENCE RESULTS

In this section, the General Moment Theorem for GS Cancellers (Eq. (7.3)) is used to derive a
number of results. Most of these results are demonstrated in Refs. 7 and 8.

Employing the General Moment Theorem under Assumptions 1 to 6 and the expressions for
oa2.(K,2), sw(K,2), sc()(K,2), NSRCW(K,2), o,2,(K,2), SNRnW(K,2), and SNRniw(K,2) given in
Section IV, we can show that

N - 1
uC2W(KN) = 1 - K (8.1)

( (K, N) = 1 - NK '1 (8.2)

sC~W (KN =(K -N)! (K + i - 1)! (8.3)

NSRCW(,N) -(K - 1) (K -N + 1)
NS~cw (K, N) K (K -N) (8.4)

uw(K, N) = K (8.5)K - N + 1'

24



NRL REPORT 9051 (REVISED)

SNRnW(K,N) = K -N+ 2K+ 1

C"'

(8.6) r-

(8.7) rrv
¢ Z~e

K!(K +i -N + 1)!
(K - N + 1)! (K + i)!

Equations (8.1) to (8.3) and (8.5) to (8.7) are given in Refs. 7 and 8.

Equation (8.7) can be used in ad hoc fashion to find the p.d.f of SNRW for any K and N. If
p = SNRnW, then the p.d.f. that yields moments as given by Eq. (8.7) is

P( = -2)! (K! (1 -KN -2 pK-N+1
=(N -2)! (K -N +1)! ~p OS p c 1.

&22
From Eq. (8.8), the p.d.f. of &,. can be obtained. Let v = &nw = l/p. It is straightforward to
show that

K!
(N - 2)! (K - N + 1)!

(,q - 1)N-2
K+1 1 < 7 S 00 .

Note that Eqs. (8.8) and (8.9) were first derived in Refs. 7 and 8, respectively.

IX. THE CONCURRENT GS CANCELLER

The discussion and results in this section pertain specifically to the concurrent GS canceller.

A. Input-Output Matrix Transform

Consider the GS canceller with all of its output channels as shown in Fig. 2(b). The K-length
input channel vectors are transformed into K-length orthogonal output vectors that form an orthogonal
basis for the N - 1 auxiliary input vectors, i.e., if z,, = (zn(l), zn(2), ... , z(K))
n = 0, 1, . .. , N - 1 are the output channel vectors, then

znlz = 0 , nj * n2. (9.1)

It is elementary to show that the main channel output vector at the n + Ith level, x + ), is
given by the expression

X6n + I) = ZN-nPZNtn
1K - t

ZN -nZN-n ]

(n)
Yx6 

Thus because zCW = Zo = xdP) and x0 = x1), it follows that

z = [IrI L -: ] ]XO 
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Equation (9.3) can be simplified by using Eq. (9.1) as

zCW= IK E z, t ]XO. (9.4)

Set
IKN-I Zn Znt( *5

n=l Znzn

The K x K matrix G is the input-output matrix transform. In addition, Gx,, = 0,
n = 1, 2, . . ., N - 1. Thus, the rows of G have an orthonormal basis that is orthogonal to the
orthonormal basis of x, , n = 1, 2, ... , N - 1. If we write the auxiliary input samples as a
K x (N - 1) matrix, Xaux, then the orthonormal basis of the rows of G is the same as the orthonor-
mal basis for the null space of C. A matrix having the form given by Eq. (9.5) is sometimes called a

complementary projection matrix. Furthermore G = Gt, G is idempotent so that

G2= G. (9.6)

B. Sample Average Bound

We use Eq. (9.4) to prove the following:

Output Power Sample Average Theorem: For concurrent GS cancellers, the sample average of the
output power residue is always less than or equal to the sample average of the input power.

Proof: The input and output power sample averages are given by

alin= 1 (9.7)

&20W = ZCW (9.8)

By use of Eqs. (9.4) and (9.6),

a2W = (Gxo)tGxo

I Kx6Gxo

1 K Xox- 1 P-1 IXo Z 2
K K~~~~~~~ 4Zn

~2 1 P1-iI |zn xoI (9.9)
S trisZ a ph~~2 ~~nf

Since the summation term in Eq. (9.9) is always positive, the theorem follows.
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C. P.D.F. of the Output Noise

Define An to be a K x K diagonal matrix with O's in the first n diagonal elements and l's in
the rest. It is straightforward to show that G can be written in the form:

G = V' AN-1 4i, (9.10)

where 4) is a K x K unitary matrix. Thus

C2W -K 4)1 ANEMIA (9.11)

= K (b) AP-Il()x )

1 (4)xo)' AP-1l ON)x)
K

We set a K-length vector, u = fxo. If x0 is a normalized K-multivariate complex Gaussian circular
process, it can be shown that u is the same. Because of the form of ANP-1,

= - I Uk (9.12)K k=N

It is elementary to show that K 2w has a K - N + 1 order chi-square p.d.f. Thus if 7 = a2 , then

KK-N+1 K-P -

p(N)= (K -N)! 71 e K, 7720. (9.13)

Note that the output noise power p.d.f. is independent of the auxiliary p.d.f.'s and their independence
properties. Only the main channel must be Gaussian, and its samples must be independent. Equation
(9.13) is the same p.d.f. that was derived by Brennan and Reed in Ref. 8 under the assumption that
all input channels are Gaussian.

Hence the following theorem results:

Concurrent GS Canceller Convergence Theorem: If the main channel of an N-input GS canceller
consists of a K-length multivariate complex circular Gaussian vector of samples that are also indepen-
dent of the non-time-coincident samples of the auxiliary channels (Assumption 3, Section II) and the
auxiliary channels have arbitrary p.d.fs, autocorrelation functions, and cross-correlation functions
with other auxiliary channels, then the normalized output noise power residue -= i2W has a p.d.f
given by Eq. (9.13).

D. P.D.F. and Power of the Signal

The input signal vector s is also transformed by the input-output matrix transform in the GS
structure. It is shown in Section VIII that the moments of the output signal power, I s 1 2, are given
by Eq. (8.3). It can be shown ad hoc that if the inputs satisfy Assumptions 1 to 6, then the p.d.f. of
p = Is, 12 is given by
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(9.14)P(P) (K -N ( -)!_ (I -p)-2 pK-N' o<<.

Again this is the same result that was derived in Ref. 8 although the signal model was different.

The input signal vector s is transformed by the projection matrix G defined by Eq. (9.5) into the
unnormalized signal vector s', given by the expression

(9.15)SI = _ -ES .
Again without loss of generality, we can set s = (or, 0, 0, ... , 0)T', where aU2 = s's is the sum of
the input signal power across K samples. Thus by using Eq. (9.15),

S ~ - .? 1X IK~ N11 ZZIZP
i't r = a2 1oT n n = _nTl

n=l Z nZn
(9.16)

where lo = (1, 0, 0, ... , O)T. Equation (9.16) simplifies to

tOS N-1
-= 1- r,

aS, n= I

I Zn (1) 12

K

E I z(k)I 2

k=1

P 5 t5 I P-1-

sc(KN) = E ( 2 = 1 - E E
n=1

I Zn (1) 12

K

, I z(k)I2
k=1

If the elements of X1, X2 . .. , xN are identically distributed r.v.'s, then the elements of z1, Z2, v . X
ZNP1 are also identically distributed r.v.'s. It then follows that independent of the p.d.f.'s of these
r.v.'s,

I Zn(1)I 2

E K Iz()I K.k, IJnW (9. 19)

Thus we have the theorem:

Concurrent GS Canceller Signal Theorem: If the samples of the auxiliary channels are identically dis-
tributed r. v. 's and the desired signal is only in the main channel, then

s, (K, N) = 1 K N - I

28
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E. General Result for Noise Power

We prove the following:

Concurrent Processing Theorem: Let an input data element in the vectors x0, x1, . .. , xN1 - have any
p. d.f (note each of the KN elements could have a different p. d.f). Then under Assumptions 2 to 6,
Section II,

Proof: Consider the form of &2 given by Eq. (9.9). We can show

E['c~w I Z1, Z2, - . . , ZN-1} = E Omn- - E
K n=l

Now E [&2? = 1 and E [x041 = IK. Hence

E Icw I Z1, Z2, . e . ZN11 = 1- N-K

The theorem follows by integrating both sides of Eq. (9.23) over the joint p.d.f. of zI, Z2 , *.. , ZN- 1.

F. Noise-to-Signal Considerations

We show in Section VIII that the average NSR is given by the expression (repeated here)

NSR(KN) - (K - 1) (K - N + 1)K (K -N)

The number of samples K3dB, where the NSR is within 3 dB of the
NSR (K, N) equal to 2 and solving for K3dB. It is found that

K3dB =

optimum, is found by setting

N + NIN2 + 4 (N - 1)
(9.25)

2

However, note that for K = N + 1, N + 2, N + 3, N + 4, N + 5,

NSR (N + 1, N) = 2 N + '

NSR(N +2,N) = 1.5 1.5

NSR (N + 3, N) = 1.33 1.33N +3 '
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zE [xoxAjzn

ZnZn
(9.22)

(9.23)

(9.24)

(9.26)
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NSR (N + 4, N) 1.25- 1.25

NSR (N + 5, N) = 1.2- 1.2

Hence, for K = N + 1, the NSR is already within 3 dB of the optimum and for K = N + 5 is
within 0.8 dB.

G. Discussion

The concurrent GS canceller converges rapidly as implied by Eq. (9.18). In fact it requires
approximately N samples to achieve the 3 dB performance point, opposed to 2N samples required for
the nonconcurrent processing [7]. However, other losses must be taken into account. These losses
are best exemplified by considering the transformed output noise and output signal vectors after GS
cancellation. These can be written as

S= (0, 0, ... 0, SNP S'N+l i.P1 , 5B) (9.27)

n' =(OO. O., ,n'N, n'N+I, *-, n'K), (9.28)

where the first N - 1 elements of each vector are equal to zero. Signal detection losses occur
because we have lost N - 1 independent samples of signal and noise by going through the GS can-
celler. Hence, the signal detector after the GS canceller whether it be a coherent integrator or some
other detector scheme (hypothesis test statistic generation and thresholding) has lost independent data
samples, which decreases the probability of detection of the signal. Thus even though K = N + 1
samples yields an NSR per time sample that is within 3 dB of the optimal steady state (K oo), the
output samples residue are so correlated that they are equivalent to having only two independent sam-
ples out of the N + 1 output samples. As a result, signal detection after GS cancellation can degrade
significantly.

X. LOWER BOUND

In this section, we derive a lower bound associated with convergence of a nonconcurrent GS
canceller when the input data are not necessarily Gaussian. In the analysis, Assumptions 2 to 6 of
Section II hold. An element of the input data vectors x0, xl, . . ., XNP1 can have any p.d.f.

A result for the two-input GS canceller is first established. For this case, it was previously
shown that

t t
-2 + -V2 1 + IX62 1 '(10.1)
Onw=(XI I2 (x0x1 1)

We can show that because E txOx} = onin.IK,

2
2 17 ~~min

E u~I .vx 11 = 1 + . (10.2)
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Thus

2 2 _

unw(K,2) E = 1 + a2 n E ; (10.3)

Appendix B shows that if z is any r.v. with a nonzero mean, then

E I{- jfŽEt (10.4)

Applying this inequality to Eq. (10.3) results in the inequality

o2,,(K, 2) 2 1 + (10.5)

We now state the following theorem:

Nonconcurrent Processing Theorem: Let an input data element in the vectors xO Xl, .x.., XN_1 have
any p. d.f Then under Assumptions 2 to 5, Section II,

ua2,(KN) 2 K + 1 (10.6)
K - N + 2

Proof: The proof of this theorem is by induction and again closely follows the proof of the General
Moment Theorem. We have shown that it is true for N = 2 (Eq. (10.5)). Thus the theorem is true
for all integers less than or equal to some upper bound: N - 1. We show this is true for any N,
which implies that it is true for any N 2 2.

Again the GSKN processor is decomposed as shown in Fig. 8 and further reduced as shown in
Fig. 9. Neither this decomposition nor reduction depend on the p.d.f.'s of the input data. Also the
concurrent data entering the GSK 1,N-1 processor satisfy Assumptions 2 to 6. In addition, the non-
concurrent data conditioned on xNP1 and XN-1 satisfy Assumptions 2 to 6.

i 2_Thus if &K 1,N-1 is the transient unnormalized output noise power residue using nonconcurrent
processing of the GSK-1 N-1 canceller where 0 K P = -K2- 1-1 and if the Nonconcurrent Processing
Theorem is true for N - 1, then

EK-K1,N-1I | XN- XN-11 K (10.7)
lm 2 K -N + 2lim ENta-I ,N-1I| XN-I, XN-1 } 

K- o

Again note that in the limit taken above, K goes to infinity only in the GSK -1, -1 structure and not
in the first-level processor that precedes the GSK -1,NP- I structure.

From Eq. (10.7), it follows that

Et-P 2 J > - K lim E[2_I 1N-l1 (10.8)O', K-N ± 2 K- OK
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We know that

2~~~~~~~~~~~~~
lim EK-IN-11 = ao,2(K,2) 2 1 + -. (10.9)

K- o K'

Substituting Eq. (10.9) into Eq. (10.8) results in the theorem being proved.

Note that if the input noises are Gaussian, then the lower bound given by Eq. (10.6) is almost

achieved. Hence, this assumption results in almost the "best case" performance.

XI. SLIDING WINDOW GS CANCELLER CONVERGENCE

The sliding window GS canceller differs from the block processing schemes previously
described in that data are processed on a sample point by sample point basis rather than in complete
blocks. For the sliding window GS canceller, the GS weights are estimated every time step. Thus,
the sliding window canceller tends to adapt to a nonstationary noise environment better than a block

processor canceller does. The weights that are calculated in the GS structure are based on a fixed
number of past samples from a given point in time. When the sampler steps one time interval, the
newest sample is included in this estimate and the oldest sample is discarded.

The sliding window GS canceller is described mathematically as follows. For any indexed time
instant j, set

x0(j) = [Xm(j), Xm(J - 1), . .. Xm(j - K + 1)IT

Xn(j) = [xn(j),xn(j - 1),... ,x,4j - K + I)]T, n = 1,2,...,N - 1 (11.1)

where K is the number of samples used to calculate each of the GS weights. From Fig. l(a), the
input vectors into the mth level of the GS structure are defined as

Xnm)(i) = [Xn~m)(j), x Im)(ij - 1), . ,x, J m j(J - K + 1)]T, (11.2)

where xl)(j) = x,,(j) and x,(')(j) = x, (j). The outputs of the two-input GSs at the mth level are
given by

M+1) ~~~~~~n =, O1,...,N - m - 1
X.( +l ) = Xn(m)(j) -wnmk()wx $jMj (i) m = 1,2,...,N - 1 (11.3)

where

-x~2(Mj ) X~m)(J)

Xk -m (i ) XN2m (j) (m11.4)

We state and prove the following theorem:

Sliding Window GS Canceller Theorem: If the input samples are identically distributed r.v. 's, then
the p. d.f 's of a given transient performance measure (output noise power residue or signal-to-noise
ratio) of the sliding window GS canceller and the concurrent GS canceller are identical. Hence all
average transient performance measures are equal for the two processing schemes.
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Proof: The proof of the above theorem is rather simple. Firstly, the output sequence of the sliding
window GS canceller is identical to that of an output sequence generated by using successive con-
current block processing and retaining only the last output data sample. To see this, let the input data
vectors to the concurrent block processor at time j be defined by Eq. (11.1). Let the K-length output
sequence of this concurrent GS canceller be z1, Z2, ... , ZK. Now ZK is exactly equal to the output of
the sliding window GS canceller at time instant j; hence, the equivalence of the two processing
schemes.

Secondly, the p.d.f.'s of a given transient performance measure for the concurrent block proces-
sor are identical for each Zk, k = 1, 2, . . , K. This results because all inputs are identically distri-
buted and the computed canceller weights are independent of the ordering (or permutation) of the
samples in the K-length input vectors as long as the permutation is the same for all N, K-length input
vectors. Hence, the p.d.f. of any transient performance measure is identical for the two types of can-
cellers and the theorem follows.

XII. OVERMATCHING DEGREES OF FREEDOM

If we examine the expression for SNRW (K,N) given by Eq. (8.6) for the nonconcurrent GS
canceller, we find that for a fixed number of input samples K, the SNRW (K, N) decreases monotoni-
cally as the order of the GS structure N. Hence, for a given input noise scenario, increasing the
order of the GS canceller may lead to a noisier output (this phenomenon also occurs for concurrent
processing).

To illustrate this problem, let us say that for a variety of input noise scenarios a GSKN can-
celler yields good cancellation performance and is therefore specified in the design. However, sup-
pose for a specific noise scenario that only an Lth order GS canceller is needed for good performance
where L < N. Hence, for this specific scenario there is a loss of cancellation performance by using
a GSKN canceller instead of a GSKL canceller. For this case, what occurs is that at the (L - l)th
level of cancellation in the GSKN canceller, the input noises in the main channel are essentially can-
celled. Thereafter, in each succeeding level the noise residue only increases. This phenomenon is
called "overmatching the degrees of freedom (DOF)." For optimality, we should have stopped the
cancellation process after the (L - 1)th level. Note that the number of DOFs for a GSKN canceller
isN - 1.

By using the expression given for SNRW (K,N) in Eq. (8.6), we can quantify this loss for non-
concurrent processing. This loss is given by

LOSSnw = SNR (K, N) K - N + 2 (12.1)

One method suggested by Lewis and Kretschmer [9] for overcoming the effects of overmatching
the DOFs is to monitor the nonconcurrent noise powers at each level of the main channel in the GS
structure. The main channel is terminated in the GS structure where the noise power is a minimum.
This point in the GS structure varies as the noise environment changes or equivalently as more or
fewer DOFs are needed.

XIII. SUMMARY

The open-loop GS canceller is shown to be numerically identical with the Sampled Matrix Inver-
sion (SMI) algorithm in the transient state if infinite numerical accuracy is assumed. Three forms of
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the GS canceller are discussed and analyzed-concurrent, nonconcurrent, and sliding window process-
ing. Previous convergence results for concurrent and nonconcurrent SMI cancellers that assume
Gaussian inputs have been reproduced by using the GS structures as an analysis tool. In addition,
new results are obtained for when the input noises are not Gaussian. Furthermore, the sliding win-
dow GS canceller is shown to have the same convergence properties as the concurrent GS canceller.
The deleterious effect of "overmatching the degrees of freedom" is discussed.
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Appendix A

PROBABILITY DENSITY FUNCTION ASSOCIATED
WITH A TWO-INPUT GS CANCELLER

In this appendix, we outline a derivation for obtaining the p.d.f. of the transient noise power
residue and the transient SNR of a two-input GS. For this analysis the estimated weight is applied to
a data set that is independent of the data set that calculated the weight (nonconcurrent processing).

Let x0 and xl be the K-length input vectors associated with the main and auxiliary channels
respectively. The estimated weight of the GS canceller is then given by

W = i, (Al)
xIx'

For nonconcurrent processing the transient noise power residue is given by

&2 = 1 + I wl 2. (A2)

We derive the p.d.f. of I V 2, from which the p.d.f. of &2 is easily attainable.

Now let z = I 1 
2 or

Z = XIx = XI X1X{ 1 (A3)
(XfX,) 2 XtX1 Xt 1x

Let

v = X6 xxo (A4)
xix'

We derive p (v I X1). The matrix xlxt/xItxl can be written as

I = Vt A 4, (AS)

where 4' is a K x K unitary matrix and A is the diagonal matrix of eigenvalues where the first diag-
onal element equals 1 and all others equal 0. Thus

v = x4'VA4bx0 = (4'xo)t A 4' x0 . (A6)
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Set a new K-length vector y = 4'xO. It is easy to show that if xO is a normalized K-length multivari-
ate complex circular Gaussian vector, then y is the same. If yj is the first element of y, then from
Eq. (A6)

V = Iy112 , (A7)

The p.d.f. of I y, 12 is the well-known second order chi-square and thus it can be shown that

p(v I Xl) = e V, v > 0. (A8)

Note that this p.d.f. is independent of x 1. As a result,

p(v) = eV, v > 0. (A9)

From Eq. (A3) and elementary probability theory we can show that

p(z lx1) = xl[Xe Zx1X' Z > 0

= ue , u 0 (A10)

where u = x'xl. It is known that the p.d.f of u is given by

p (U)= 1 uK-e -U, u 2 0. (All)(K-i)!
Hence

p(Z) = C p(x Iu)p(u) du (A12)

1 K -zlud
u u dso (K - 1)! U (A13)

It is elementary to show that the above integral reduces to

P(Z) - ( l)K+1 , Z 2 0. (A14)

If we set X = &2, then it follows from Eqs. (A14) and (A2) that

P(N) , q 2 1. (A15)
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FIRST MOMENT BOUND

If z is a random variable with z 2 0 0 < E [z } < co and EI1 /z } < oo, then

E uyu t LE p

We use the Cauchy-Schwarz inequality to show this. Let p(z) be the p.d.f. of z. Now

o p(z) dz = (B2)I 1X kp(z) X p(z) dz = 1,0 z
where the square root function shown above is the positive square root function. Using the Cauchy-
Schwarz inequality,

P (Z) dz - zp(z) dz
0 Z J

I'p (Z) dz 0 z

2 0 Npz) . V P(z) dz .z

J 0 zp(z) dz 2 1.

Equation (B1) follows from Eq. (B4).
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(B11)

Thus

(B3)

(B4)


